Jika Anda kerap menjelajahi aplikasi-aplikasi lowongan pekerjaan. Anda tentunya pernah melihat lowongan pekerjaan sebagai data scientist lewat sekilas ketika Anda men-scroll layar monitor Anda. Anda tertarik dan mengklik iklan tersebut karena gaji yang ditawarkan cukup besar dan sedikit membuat Anda berkeinginan untuk beralih profesi menjadi data scientist. Kemudian Anda bertanya-tanya skill apa saja yang harus dimiliki oleh seorang data scientist.

Sebenarnya data scientist itu sudah ada sejak dulu yang sering disebut dengan statistikawan. Perbedaannya terletak pada metode yang digunakan. Jika statistikawan harus mengolah ataupun mengumpulkan data secara manual, kini data scientist banyak berurusan dengan big data (data yang terstruktur maupun tidak terstruktur). Oleh karena itu, tidak mengherankan jika data scientist sekarang lebih sering menciptakan algoritma-algoritma di dalam program komputer agar data yang masuk bisa langsung diolah sendiri oleh komputer tersebut.

Lalu apakah semua software developer bisa menjadi data scientist? Jawabannya belum tentu. Masih banyak skill yang harus dikuasai oleh data scientist. Yuk, kita bahas satu per satu.

 

Pemprograman

Di perusahaan manapun seorang data scientist bekerja, kemampuan akan programming sudah menjadi suatu keharusan. Seorang data scientist harus memahami tools of trade yang digunakan secara mendalam. Ini berarti data scientist paling tidak harus menguasai bahasa pemrograman seperti R  ataupun Python (Anda bisa mendalami machine learning dengan python di sini) serta bahasa database querying seperti SQL. 

(Jika Anda ingin mengenal bahasa pemrograman R yang dapat digunakan untuk machine learning, Anda bisa mengikuti Comday “Pengenalan Bahasa Pemrograman R dalam Machine Learning“)

 

Statistika

Pemahaman yang menyeluruh mengenai statistika merupakan hal yang paling mendasar bagi seorang data scientist. Selain untuk menentukan algoritma yang akan digunakan, ilmu statistika diperlukan untuk mengembangkan software machine learning yang berfungsi sebagai pusaka seorang data scientist.

 

Machine Learning

Bagi seorang data scientist yang bekerja di perusahaan dimana produknya bersifat data driven seperti Google Maps, Netflix, atau Uber pasti sangat membutuhkan machine learning. Mereka tidak mungkin menentukan algoritma dari data yang tak terstruktur dengan jumlah yang sangat besar satu per satu. Maka dari itulah para data scientist harus bisa mengembangkan machine learning untuk mengolah banyaknya data tak terstruktur tadi dan bukannya tak mungkin apabila machine learning yang dikembangkan oleh para data scientist ini dipakai untuk sebuah konsep artificial intelegence.

(Jika Anda tertarik untuk mempelajari machine learning Anda bisa mengambil pelatihan dalam 5 hari di Kelas Machine Learning yang diadakan oleh Inixindo Jogja)

 

Kalkulus & Aljabar

Menguasai kalkulus dengan fungsi yang dapat diterapkan di banyak variabel dan aljabar linear merupakan sesuatu yang tak kalah penting bagi seorang data scientist. Kalkulus dan aljabar merupakan konsep yang paling dasar dan sederhana bagi data science. Oleh karena itu, tidak mengherankan jika pada saat wawancara kerja, pencari kerja biasanya menanyakan soal-soal kalkulus dan aljabar.

 

Pemetaan Data

Terkadang data yang kita dapatkan tidaklah sesempurna yang kita kira. Secara penulisan kata ‘Yogyakarta’ dan ‘Jogja’ berbeda tapi secara konsep memiliki makna yang sama. Dan ingat, komputer itu tidak sepintar manusia. Sebagai seorang data scientist kita harus membuat data tersebut dikenali oleh komputer. Untuk itulah pemilahan data diperlukan untuk menjaga ‘kebersihan’ data.

 

Komunikasi dan Visualisasi Data

Bagi manajemen yang data-driven terutama di perusahaan yang masih tergolong baru, data scientist di perusahaan mereka sering dimintai bantuan dalam menentukan arah kebijakan suatu perusahaan. Maka tak heran jika data scientist harus pandai memvisualisasikan dan mempresentasikan data hasil olahannya sendiri.

 

Software Engineering

Di perusahaan start-up teknologi biasanya melibatkan langsung data scientist mereka ke dalam pengembangan software. Tapi dimanapun kita bekerja tidak ada salahnya kita belajar sedikit tentang software engineering.

 

Intuisi

Skill ini sebenarnya lebih dibutuhkan bagi seorang data analyst yang harus memecahkan masalah dari data yang sudah diolah. Intuisi sering mengarah pada gambling yang memang bertolak belakang dengan kata ‘science’ pada data scientist tapi perkataan dari Sherlock Holmes versi serial BBC mengatakan ‘sebuah intuisi lahir dari pemrosesan secara cepat jutaan data yang ada di dalam otak sampai-sampai otak kita sendiripun tak mampu mennyadari proses tersebut.’

 

Bagaimana mimpi menjadi data scientist sudah mulai nampak nyata bukan? Jika Anda ingin belajar lagi tentang komponen-kompenen pengetahuan yang harus dimiliki oleh data scientist Anda dapat mendalami tentang big data hadoop secara fundamental atau pemrograman R,